We explore unifying a neural segmenter with two-pass cascaded encoder ASR into a single model. A key challenge is allowing the segmenter (which runs in real-time, synchronously with the decoder) to finalize the 2nd pass (which runs 900 ms behind real-time) without introducing user-perceived latency or deletion errors during inference. We propose a design where the neural segmenter is integrated with the causal 1st pass decoder to emit a end-of-segment (EOS) signal in real-time. The EOS signal is then used to finalize the non-causal 2nd pass. We experiment with different ways to finalize the 2nd pass, and find that a novel dummy frame injection strategy allows for simultaneous high quality 2nd pass results and low finalization latency. On a real-world long-form captioning task (YouTube), we achieve 2.4% relative WER and 140 ms EOS latency gains over a baseline VAD-based segmenter with the same cascaded encoder.
translated by 谷歌翻译
Self-supervised pre-training of a speech foundation model, followed by supervised fine-tuning, has shown impressive quality improvements on automatic speech recognition (ASR) tasks. Fine-tuning separate foundation models for many downstream tasks are expensive since the foundation model is usually very big. Parameter-efficient fine-tuning methods (e.g. adapter, sparse update methods) offer an alternative paradigm where a small set of parameters are updated to adapt the foundation model to new tasks. However, these methods still suffer from a high computational memory cost and slow training speed because they require backpropagation through the entire neural network at each step. In the paper, we analyze the performance of features at different layers of a foundation model on the speech recognition task and propose a novel hierarchical feature fusion method for resource-efficient transfer learning from speech foundation models. Experimental results show that the proposed method can achieve better performance on speech recognition task than existing algorithms with fewer number of trainable parameters, less computational memory cost and faster training speed. After combining with Adapters at all layers, the proposed method can achieve the same performance as fine-tuning the whole model with $97\%$ fewer trainable encoder parameters and $53\%$ faster training speed.
translated by 谷歌翻译
语言识别对于自动语音识别(ASR)中的许多下游任务至关重要,并且有益于将多语言端到端的ASR集成为附加任务。在本文中,我们建议通过集成每帧语言标识符(LID)预测器来修改基于层压编码器的复发神经网络传感器(RNN-T)模型的结构。带有级联编码器的RNN-T可以使用不右键的第一通用解码来实现较低延迟的流动ASR,并使用二频道解码使用更长的右文本实现较低的单词错误率(WERS)。通过利用当前文章中的这种差异和统计池的流传输实现,该建议的方法可以实现准确的流盖预测,而几乎没有额外的测试时间成本。语音搜索数据集的实验结果具有9个语言语言位置,表明所提出的方法平均达到96.2%的盖子预测准确性,而与输入中的Oracle盖相同的二次通用方法。
translated by 谷歌翻译
设备的端到端(E2E)模型已显示出对质量和延迟的英语语音搜索任务的常规模型的改进。 E2E模型还显示了多语言自动语音识别(ASR)的有希望的结果。在本文中,我们将以前的容量解决方案扩展到流应用程序,并提出流媒体多语言E2E ASR系统,该系统在设备上完全运行,质量和延迟与单个单语言模型相当。为了实现这一目标,我们提出了一个编码器端量模型和一个终端(EOU)联合层,以提高质量和延迟权衡。我们的系统以语言不可知论的方式构建,允许它实时支持本条件的代码切换。为了解决大型模型的可行性问题,我们进行了设备分析,并用最近开发的嵌入解码器代替了耗时的LSTM解码器。通过这些更改,我们设法在不到实时的时间内在移动设备上运行了这样的系统。
translated by 谷歌翻译
在启用语音的应用程序中,一个预定的热词在同时用来激活设备以便进行查询。 toavoid重复一个热词,我们提出了一个端到端的流(E2E)打算查询检测器,该查询检测器识别向设备指向的发音,并滤除针对设备的其他发出内容。提出的方法将预期的查询检测器置于E2E模型中,该模型将语音识别的不同组件折叠成一个神经网络。E2E对台面解码和预期的查询检测进行建模,也使我们可以基于早期的部分偏置检测结果, ,这对于减少潜伏期和使系统响应很重要。我们证明,与独立的预期检测器相比,检测准确性和600个MSLATENCE的相对相对改善的相对提高一级误差率(EER)的相对提高了22%。在我们的实验中,提出的模型检测用户正在用用户开始讲话后,用8.7%的Eerwithin与设备进行对话。
translated by 谷歌翻译
尽管流媒体助手系统已在许多应用中使用,但该系统通常集中于不自然的单次交互,假设来自单个语音查询的输入毫不犹豫地或不足。但是,除了反弹之外,常见的对话说法通常涉及多个转弯的查询。这些疏远包括暂停思考,犹豫,延长单词,填补的停顿和重复的短语。这使得通过对话演讲进行语音识别,其中包括有多个查询,这是一项具有挑战性的任务。为了更好地建模对话互动,至关重要的是,歧视汇率和查询的结束至关重要,以使用户能够在用户完成时,同时使系统尽快做出响应,以使用户保持地板的折衷。在本文中,我们提出了一个基于端到端(E2E)语音识别器的转折预测指标。我们的最佳系统是通过共同优化ASR任务并检测用户何时停止思考或完成口语来获得的。所提出的方法显示,在预测真正的转弯率的97%以上的召回率和85%的精度率中,在设计集中仅100毫秒延迟,设计了4种类型的对话说法中插入4种散布。
translated by 谷歌翻译
仔细的音频表示形式已成为许多语音任务方法设计的主要特征。这种方法越来越强调“解开”,其中表示形式仅包含与转录相关的一部分,同时丢弃无关信息。在本文中,我们基于ASR和TTS的联合建模构建了一项表示的学习任务,并试图学习音频的表示,该声音信号的一部分与该部分相关的一部分与该部分相关。我们提供了经验证据,表明成功找到这种表示形式与训练中固有的随机性有关。然后,我们观察到这些所需的,分散的解决方案对优化问题具有独特的统计特性。最后,我们表明,在训练期间执行这些特性会使我们的联合建模任务平均相对24.5%。这些观察结果激发了一种新颖的学习有效音频表示的方法。
translated by 谷歌翻译
由于无标记的文本和语音数据的广泛可用性,最近基于仅音频数据的仅文本和半监督培训已广受欢迎。在这项工作中,我们建议将纯文本和半监督培训纳入基于注意力的审议模型。通过将纯文本数据合并到培训审议文本编码器的变压器(BERT)的双向编码器表示中,以及使用联合声学和文本解码器(JATD)和半诉讼程序的大规模文本到语音和纯音频和音频话语培训,与基线审议相比,我们的各种任务减少了4%-12%。与最先进的语言模型(LM)纠正方法相比,审议模型将Google语音搜索降低了11%。我们表明,与具有合理的终端潜伏期的最先进的LM委员相比,审议模型还获得了正面的人类并排评估。
translated by 谷歌翻译
尽管受到监督的深度学习彻底改变了语音和音频处理,但它必须为个人任务和应用程序方案建立专业模型。同样,很难将其应用于仅可用标记数据的方言和语言。自我监督的代表学习方法承诺一个单一的通用模型,该模型将使各种各样的任务和领域受益。这种方法已显示出在自然语言处理和计算机视觉域中的成功,在减少许多下游场景所需的标签数量的同时,达到了新的性能水平。语音表示学习在三个主要类别中也经历了类似的进展:生成,对比和预测方法。其他方法依赖于多模式数据,用于预训练,将文本或视觉数据流与语音混合。尽管自我监督的语音表示仍然是一个新生的研究领域,但它与用零词汇资源的声学单词嵌入和学习密切相关,这两种资源已经进行了多年的积极研究。这篇评论介绍了自我监督的语音表示学习及其与其他研究领域的联系的方法。由于许多当前的方法仅集中在自动语音识别作为下游任务上,因此我们回顾了基准测试的最新努力,以将应用程序扩展到语音识别之外。
translated by 谷歌翻译
在长时间到数小时的长时间话语中,提高端到端ASR模型的性能是语音识别的持续挑战。一个常见的解决方案是使用单独的语音活动检测器(VAD)事先将音频分割,该声音活动检测器(VAD)纯粹基于声音/非语音信息来决定段边界位置。但是,VAD细分器可能是现实世界语音的最佳选择,例如,一个完整的句子应该整体上可能包含犹豫(“设置... 5点钟的警报”) 。我们建议用端到端的ASR模型替换VAD,能够以流方式预测段边界,从而使细分决定不仅在更好的声学特征上,而且还可以在解码文本的语义特征上进行,并具有可忽略的额外功能计算。在现实世界长音频(YouTube)的实验中,长度长达30分钟,我们证明了相对改善的8.5%,并且与VAD段基线相比,中位段延迟潜伏期的中位数延迟延迟减少了250毫秒。 - ART构象体RNN-T模型。
translated by 谷歌翻译